

Journal of Organometallic Chemistry 627 (2001) 23-36

www.elsevier.nl/locate/jorganchem

Five- and six-membered ring Group 14 chalcogenides of the types $(Me_2ME)_3$ (M = Si, Ge, Sn), E(Si_2Me_4)_2E, Me_4Si_2(E)_2MR_x $(MR_x = C(CH_2)_5$, SiMe₂, GeMe₂, SnMe₂, SnPh₂, BPh) and $[Me_4Si_2(E)_2SiMe_{-1}]_2$ (E = S, Se, Te)

U. Herzog^{a,*}, G. Rheinwald^b

^a Institut für Anorganische Chemie der TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg, Germany ^b Institut für Chemie der TU Chemnitz, Straße der Nationen 62, D-09111 Chemnitz, Germany

Received 8 September 2000; accepted 14 December 2000

Abstract

The reactions of Me₂MCl₂ (M = Si, Ge, Sn) with either H_2S/NEt_3 or Li₂E (E = Se, Te) yielded the six-membered-ring compounds (Me₂ME)₃. Similarly the treatment of ClMe₂SiSiMe₂Cl (1) with H₂S/NEt₃ or Li₂E resulted in the formation of $E(Si_2Me_4)_2E$. Mixed species $E(Si_2Me_4)_2E'$ could be obtained by reaction with mixtures of Li_2E and Li_2E' or in the presence of traces of moisture (E' = O). Reactions of 1:1 mixtures of Me₂MCl₂ and 1 with Li₂E resulted in exclusive or at least preferred formation of five-membered rings Me₄Si₂(E)₂MMe₂. A carbon analogue, Me₄Si₂(S)₂C(CH₂)₅, was obtained from 1 and $(HS)_2C(CH_2)_5$. Boron could also be introduced in these ring systems, starting from PhBCl₂ and 1 the compounds PhB(E)₂Si₂Me₄ (E = S, Se) could be synthesized. Mixtures of 1 and Cl₂MeSiSiMeCl₂ yielded, on treatment either with H₂S/NEt₃ or Li₂E (E = Se, Te), the bis(cyclopentyl) compounds [Me₄Si₂(E)₂SiMe–]₂.

All products have been characterized by multinuclear NMR (¹H, ¹¹B, ¹³C, ²⁹Si, ⁷⁷Se, ¹¹⁹Sn, ¹²⁵Te) measurements including coupling constants. Trends of chemical shifts and coupling constants are discussed. The crystal structures of $E(Si_2Me_4)_2E$ (E = S, Se) and [Me₄Si₂(S)₂SiMe-]₂ are reported. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Silthianes; Selenides; Tellurides; Germanium; Tin

1. Introduction

In the course of our systematic investigations on silicon (and other Group 14) chalcogenides [1-4] we report in this paper on five- and six-membered ring chalcogenides of Group 14 elements (Si, Ge, Sn). Some compounds like $(Me_2SiE)_3$ (E = S [5], Se [6]), $(Me_2SnE)_3$ (E = S, Se, Te) [7], E(Si_2Me_4)_2E (E = S, Se) [8], $Me_4Si_2(S)_2SiMe_2$ [1,9] or $Me_4Sn_2(E)_2SnMe_2$ (E = S, Se, Te) [7] have been reported previously (including some NMR chemical shifts) but there has not been any systematic investigation of this class of compounds so

far allowing us to conclude, e.g. trends of NMR data (chemical shifts, coupling constants) in series like $(Me_2ME)_3$, M = Si, Ge, Sn, E = (O), S, Se, Te. On the other hand, especially a comparison of NMR data of the same building blocks in five- and six-membered ring compounds seems to be very interesting. Previous investigations, for instance, have shown, that the formation of five-membered rings is accompanied by a strong down field shift of the ²⁹Si-NMR signals in comparison with acyclic compounds or six-membered rings containing the same first coordination sphere at silicon.

DFT calculations on the equilibrium have shown that the formation of the five-membered ring according to Eq. (1) lowers the total energy (including vibrational zero point correction) of the system by 36.0 kJ mol^{-1} [1]. This means that five-membered rings seem to be the most stable ring size in these systems.

^{*} Corresponding author. Tel.: +49-3731-394343; fax: +49-3731-394058.

E-mail address: herzog@merkur.hrz.tu-freiberg.de (U. Herzog).

Crystal structures of $(R_2ME)_3$ are only known for some cyclotrisilthianes with larger substituents R, e.g. *trans*-(PhMeSiS)₃ (twisted boat conformation, d_{sis} : 2.13–2.15 Å, ∠SiSSi: 104.7–108.0°, ∠SSiS: 112.2– 112.6° [10]) and for the tin chalcogenides (Me₂SnS)₃ (two modifications reported: tetragonal: d_{SnS} : 2.41 Å, \angle SnSSn: 103°, \angle SSnS: 107.7° [11]; monoclinic: d_{SnS} : 2.41–2.44 Å, ∠SnSSn: 102.0–104.4° ∠SSnS: 106.1– 108.7° [12]), (Me₂SnSe)₃ (d_{SnSe} : 2.52–2.54 Å, \angle SnSeSn: 100.6, 101.1°, ∠SeSnSe: 107.8, 110.6°) [13], and $(Me_2SnTe)_3$ (d_{SnTe} : 2.72–2.77 Å, $\angle SnTeSn$: 94.9–97.4°, \angle TeSnTe: 111.3–113.6°) [14] which also adopt unusual twisted boat conformations. Furthermore the molecular structures of the five-membered heterocyclic tin compounds $Me_4Sn_2^A(Se)_2Sn^BMe_2$ (envelope conformation, d_{SnSn} : 2.77–2.78 Å, d_{snAs} : 2.56–2.58 Å, d_{snBs} : 2.52–2.55 Å, ∠SnSeSn: 93.3–96.7°, ∠SeSn^BSe: 106.5– 107.2°) [15] and ${}^{\prime}Bu_4Sn_2^A(E)_2Sn^{B\prime}Bu_2$ (E = S: planar, d_{SnSn} : 2.88 A, d_{SnAs} : 2.40–2.43 A, d_{SnBs} : 2.40–2.42 A, \angle SnSSn: 107.9–108.3°, \angle SSn^BS: 115.3; E = Se: planar, d_{SnSn} : 2.88 Å, $d_{\text{snA}_{Sc}}$: 2.52–2.53 Å, $d_{\text{snB}_{Sc}}$: 2.52–2.53 Å, ∠SnSeSn: 106.3–106.5°, ∠SeSn^BSe: 115.1; E = Te: twisted, d_{SnSn} : 2.84 Å, $d_{\text{SnA}_{\text{Te}}}$: 2.75 Å, $d_{\text{SnB}_{\text{Te}}}$: 2.74 Å, \angle SnTeSn: 101.6-102.3°, \angle TeSn^BTe: 114.0-114.3) [16]; have been reported. The conformations of the latter are obviously determined by the steric demand of the 'butyl substituents at the tin atoms.

2. Results and discussion

2.1. Six-membered ring compounds $(Me_2ME)_3$ (M = Si, Ge, Sn; E = S, Se, Te)

All compounds of this class could be synthesized starting from the dichlorodimethyl derivatives either by reaction with H_2S/NEt_3 or Li_2E (E = Se, Te) Eqs. (2) and (3):

All products were characterized by multinuclear NMR spectroscopy, in the cases of E = S MS spectra could also be recorded. Table 1 summarizes the observed NMR parameters. NMR data of **2a**, **2b** and **4a**–**c**, as far as they have been published, are in good agreement with these data. In comparison with the acyclic compounds Me₂Si(SBu)₂ (δ_{si} : 24.8 ppm) [17], Me₂Si(SMe)₂ (δ_{si} : 28.14 ppm) [18], Me₂Si(SeBu)₂ (δ_{si} : 18.1 ppm) [19] and Me₂Si(TeBu)₂ (δ_{si} : - 24.6 ppm) [20] the formation of a six-membered ring is accompanied by a high field shift of about 3 ppm (compared to the EBu-derivatives with the same E). Similar effects can also be observed for the tin compounds. The acyclic derivatives Me₂Sn(SMe)₂ and Me₂Sn(SeMe)₂ exhibit

Table 1

NMR data of the six-membered rings (Me₂ME)₃; M = Si, Ge, Sn; E = S, Se, Te (chemical shifts in ppm, coupling constants in Hz)

Compound	$\delta_{\rm E}$	$\delta_{\mathbf{M}}$	${}^{1}J_{\mathrm{ME}}$	δ_{C}	${}^{1}J_{\mathrm{MC}}$	δ_{H}
$\overline{(\text{Me}_2\text{SiS})_3}$ (2a)		21.1		7.95	59.6	0.69
$(Me_2SiSe)_3$ (2b)	Se: -244	15.2	130.7	8.7	55.4	0.91
$(Me_2SiTe)_3$ (2c)	Te: -618	-23.7	344.5	8.8	49.5	1.26
					${}^{2}J_{\text{TeC}}$: 18.4	${}^{3}J_{\text{TeH}}$: 8.8
$(Me_2GeS)_3$ (3a)				10.6		0.97
$(Me_2GeSe)_3$ (3b)	Se: -182			11.1		1.15
$(Me_2GeTe)_3$ (3c)	Te: -476			10.3		1.42
. 2 ,5 . ,					${}^{2}J_{\text{TeC}}$: 9.6	${}^{3}J_{\text{TeH}}$: 7.3
$(Me_2SnS)_3$ (4a)		$133^{2}I_{a} = 193^{a}$		4.8	405.1	0.86
$(Me_2SnSe)_3$ (4b)	Se: -360	$46^{2} L_{c,a} \cdot 231^{a}$	1217	4.4	363.5	0.99 ² La x ² 57 8
$(Me_2SnTe)_3$ (4c)	Te: -859	-192 $^2J_{\text{SnSn}}$: 239 °	3098	1.9	298	1.17 ${}^{2}J_{\rm SnH}$: 52

^{a 2} $J_{119Sn117Sn.}$

Fig. 1. NMR chemical shifts in six-membered rings $(Me_2ME)_3$ (M = Si, Ge, Sn; E = S, Se, Te).

Fig. 2. Correlation of δ_{se} and δ_{Te} in different kinds of silselenanes and siltelluranes and related germanium and tin derivatives (M = Si, Ge, Sn; E = Se, Te) reported here and in Refs. [3,4] (r = regression coefficient).

¹¹⁹Sn-NMR shifts of 144 [21] and 57 ppm [22], respectively, which are in both cases at a lower field by 11 ppm than the corresponding (Me₂SnE)₃ derivatives. On the other hand, the ²⁹Si-NMR signal of Me₂Si(TeBu)₂ (δ_{si} : – 24.6 ppm) [20] is by 0.9 ppm at a higher field than in the case of the corresponding six-membered ring **2c**.

If several NMR parameters, such as $\delta_{\rm E}$, $\delta_{\rm C}$ or $\delta_{\rm H}$ of analogous derivatives of silicon, germanium and tin are compared, see Fig. 1, it is obvious, that the values of the germanium compounds do not lie between those of the silicon and tin derivatives but are shifted in all cases to a lower field. This trend can also be found in five-membered rings discussed in Section 2.3.

It can be explained with the higher electronegativity (2.02) of germanium (values according to Allred and Rochow [23]) in comparison with those of silicon (1.74) and tin (1.72).

Concerning the chemical shifts of selenium and tellurium it has already been stated, that in equivalent compounds the chemical shifts run closely parallel. A plot of δ_{Te} against δ_{Se} for a variety of organic derivatives has been found to be linear with a slope of about 1.6 [24,25]. As can be seen from Figs. 2 and 3 again a linear relationship between δ_{Se} and δ_{Te} as well as ${}^{1}J_{\text{SiSe}}$ and ${}^{1}J_{\text{SiTe}}$ could be observed but with a steeper slope of app. 2.6 in both cases. In order to show that this observation is more general other types of Group 14

Fig. 3. Correlation of ${}^{1}J_{SiSe}$ and ${}^{1}J_{SiTe}$ in different kinds of silselenanes and siltelluranes reported here and in Refs. [3,4] (same compounds as in Fig. 2).

selenides and tellurides have been included into the figures, too.

Some deviations in Fig. 2 may arise from the fact that compounds like $(Me_2SiSe)_3$ and $(Me_2SiTe)_3$ have been compared, but to be correct, δ_{Se} of $(Me_2SiSe)_3$ should be compared with the δ_{Te} of $Me_6Si_3Se_2Te$.

An equivalent correlation like that in Fig. 3 can also be observed by comparing ${}^{1}J_{\text{SnSe}}$ with ${}^{1}J_{\text{SnTe}}$ of equivalent compounds (**4b/4c**, **6i/6n** or the bicyclic compounds Me₂Sn(E)₂Si₂Me₂(E)₂SnMe₂ [3]) yielding a slope of 2.54.

2.2. Six-membered rings $E(Si_2Me_4)_2E'$; E, E' = O, S, Se, Te

Starting from 1 the six-membered rings $E(Si_2Me_4)_2E$ (E = O (5a), S (5b), Se (5c) and Te (5d)) were formed without any acyclic by-products by reaction with either H₂E/NEt₃ or Li₂E (Eqs. (4) and (5)):

In the synthesis of **5d** it is crucial to add **1** to the THF solution of Li₂Te at a temperature below 0°C, otherwise the five-membered ring $Me_4Si_2(Te)_2SiMe_2$ (**6**)

is formed exclusively by the cleavage of one Si-Si bond.

The mixed species $O(Si_2Me_4)_2E$ (E = S (5e), Se (5f), Te (5g)) have been observed as by-products if the reactions (Eqs. (4) and (5)) were carried out in the presence of traces of moisture. Besides NMR-spectroscopic evidence also a mass spectrum of 5e could be recorded. Finally the mixed substituted compounds $S(Si_2Me_4)_2Se$ (5h), $S(Si_2Me_4)_2Te$ (5i) and $Se(Si_2Me_4)_2Te$ (5k) were prepared together with the homosubstituted cycles 5b-d upon treatment of 1 with 1:1 mixtures of Li₂E and Li₂E' (E = S, Se; E' = Se, Te).

While **5a** is a well known compound [26] (a ²⁹Si-NMR chemical shift of 2.3 ppm has been reported in Ref. [27]), the sulfur and selenium derivatives **5b** and **5c** have been synthesized by the insertion of elemental sulfur or selenium (red modification) into the five-membered rings (Me₂Si)₄E (obtained from (Me₂Si)₄ and E₈) [8]. In contrast to observations reported in Ref. [8] we found both compounds to give relatively stable colorless crystals in an inert atmosphere but they hydrolyze on contact with air (**5c** more rapidly than **5b**). The ²⁹Si-NMR shifts given in Ref. [8] differ somewhat from our results, especially for **5c** and the also reported mixed sulfur selenium compound **5h**.

Fig. 4. ZORTEP plot of the molecular structure of 5b.

Fig. 5. ZORTEP plot of the molecular structure of 5c.

Crystal structure analyses of **5b** and **5c** have been carried out, and Figs. 4 and 5 show the molecular structures. In contrast to the reported twisted boat conformations of $(MePhSiS)_3$ [10] and 4a-c [11–14] in both molecules the six-membered ring adopts a chair conformation. Some important bond parameters are summed up in Table 2. Both compounds crystallize in

Table 2 Important bond distances and angles of **5b** and **5c** the same space group with almost identical lattice constants.

The Si-S as well as Si-Se bond lengths found are relatively large in comparison with reported values of other silthianes and silselenanes. But in general the Si-S bond distances decrease with the number of S substituents at silicon [28] and in **5b** there is only one sulfur atom connected to each silicon atom. The same might also hold for the Si-Se bond lengths but fewer data of crystal structures are available. Furthermore, the bond angles at sulfur and selenium are smaller than the tetrahedral angle but larger than values found previously in other cyclic silthianes or selenanes or related germanium and tin compounds. These observations are confirmed by previously performed DFT calculations on 5b (B3LYP/6-31G*) which also yielded a relatively large bond length Si-S of 2.187 Å and an angle Si-S-Si of 109.2° [1].

Atoms	Bond length		Atoms	Angles		
	5b $(E = S)$	5c (E = Se)		5b (E = S)	5c (E = Se)	
Si(1)-Si(2)	2.3373(4)	2.3306(10)	Si(1)-E(1)-Si(2a)	106.45(1)	105.14(3)	
Si(1)-E(1)	2.1562(4)	2.2908(8)	E(1)-Si(1)-Si(2)	111.90(2)	111.37(4)	
Si(2a)-E(1)	2.1545(4)	2.2883(8)	E(1a)-Si(2)-Si(1)	113.29(2)	112.27(3)	
Si(1) - C(1)	1.8713(11)	1.870(3)	C(1)-Si(1)-C(2)	109.21(6)	110.17(16)	
Si(1)-C(2)	1.8869(11)	1.863(8)	C(3)-Si(2)-C(4)	109.68(5)	110.65(15)	
Si(2) - C(3)	1.8666(11)	1.871(3)	E(1)-Si(1)-Si(2)-E(1a)	-59.65(2)	-62.40(4)	
Si(2) - C(4)	1.8709(11)	1.867(3)	Si(2a) - E(1) - Si(1) - Si(2)	55.74(2)	58.17(4)	

Table 3

NMR data of the six-membered ring compounds $E(SiMe_2SiMe_2)_2E$ (E = O, S, Se, Te)

Compound	$\delta_{ m E}$	δ_{Si}	$^{1}J_{ m SiE}$	$\delta_{ m C}$	$^{1}J_{ m SiC}$	δ_{H}
$O(Si_2Me_4)_2O$ (5a)		3.7		2.8		0.21
$S(Si_2Me_4)_2S$ (5b)		-4.8		1.94	45.4	0.44
$Se(Si_2Me_4)_2Se$ (5c)	-369	-9.1	109.8	1.40	44.1	0.55
$Te(Si_2Me_4)_2Te$ (5d)	-885	-28.9	280.2 ² J _{SiTe} : 13	1.00	42.3	0.72

Table 4

NMR data of the six-membered ring compounds $E(Si^AMe_2Si^BMe_2)_2E'$ (E, E' = O, S, Se; E \neq E')

Compound	δ_{E}	${}^{1}J_{\mathrm{SiE}}$	δ_{SiA}	${}^{1}J_{ m SiC}$	$\delta_{\rm SiB}$	${}^{1}J_{\rm SiC}$	${}^{1}J_{ m SiSi}$	$\delta_{ m C}$	δ_{HA}	$\delta_{\rm HB}$
$O(Si_2Me_4)_2S$ (5e)			4.7	58.3	-8.4	43.7	100.1	2.31, 1.88	0.26	0.38
$O(Si_2Me_4)_2Se(5f)$	Se: -317	103	4.1		-13.6	43.2	98	1.85, 1.75	0.26	0.48
$O(Si_2Me_4)_2Te(5g)$	Te: -902	255.1	3.8	а	-35.6	40.8	95.7	1.48, 1.12	0.26	0.64
$S(Si_2Me_4)_2Se$ (5h)	Se: -370	107.9	-3.9	45.7	-10.1	45.7	92.8	1.81, 1.52	0.45	0.54
$S(Si_2Me_4)_2Te$ (5i)	Te: -916	267.2	-2.5	b	-32.8	43.7	89.4	1.73, 0.97	0.47	0.70
$Se(Si_2Me_4)_2Te(5k)$	Se: - 366	112.2	-7.3	44.5	-31.5	41.8	88.0	1.37, 0.93	0.57	0.71
× 2 · · 2 · · · ·	Te: -890	273.1		с				·		

^{a 2}J_{SiTe}: 10.2.

^{b 2}J_{SiTe}: 8.3.

^{c 2}J_{SiTe}: 8.7.

The observed NMR parameters of 5a-k are given in Tables 3 and 4. In the row 5a-d (E = O, S, Se, Te) the ²⁹Si- and ¹³C-NMR signals are shifted to higher field and the values of the ¹J_{SiC} coupling constants decrease which is consistent with the decreasing electronegativity of E. On the other hand, $\delta_{\rm H}$ of the methyl groups increases, but this trend parallels the increasing deshielding effect of heavier halogen substituents at silicon towards methyl protons [29].

Compared with the acyclic disilane derivatives BuS–SiMe₂–SiMe₂–SBu [17], BuSe–SiMe₂–SiMe₂–SeBu [19] and BuTe–SiMe₂–SiMe₂–TeBu [20] the ²⁹Si-NMR signals of the six-membered rings are more shielded by 3.2 (**5b**), 2.4 (**5c**) and 2.9 ppm (**5d**) whereas the $\delta_{\rm C}$ values of the methyl carbon atoms are shifted by 2–3 ppm to a lower field and $\delta_{\rm H}$ and ¹J_{SiC} remain almost unchanged.

In the mixed six-membered ring compounds $5e-k \delta_{Si}$ of the SiMe₂ units attached to the more electronegative E atom is shifted to a lower field while δ_{Si} of the other SiMe₂ units are shifted to a higher field in comparison with δ_{Si} in the comparable compounds 5a-d. This effect increases with increasing difference in the electronegativities of E and E' and can also be observed for other unsymmetrically substituted disilanes.

In the mixed six-membered rings it has also been possible to obtain ${}^{1}J_{\text{SiSi}}$ coupling constants. As expected, the values increase with the electronegativities of the two chalcogen atoms E and E' and fall in the expected range.

2.3. Five-membered rings $Me_4Si_2(E,E')_2MR_x$; E (E' = S, Se, Te; $MR_x = BPh$, $C(CH_2)_5$, $SiMe_2$, $GeMe_2$, $SnMe_2$, $SnPh_2$)

As already reported in Ref. [1], the reaction of 1 in mixture with Me_2SiCl_2 yields the five-membered ring $Me_4Si_2(S)_2SiMe_2$ (6a) as the preferred product. This reaction can also be used to prepare the corresponding germanium (6b), tin (6c,d) and boron (6e) containing cycles (Eqs. (6) and (7)):

 A carbon analog (**6f**) has been obtained in a clean reaction by treatment of **1** with cyclohexane-1,1-dithiol (Eq. (8)):

1,1-Dithiols are accessible from ketones and H_2S according to [30] (Eq. (9)):

$$\underbrace{\begin{array}{c} \begin{array}{c} 2 H_2 S \\ \hline \\ -H_2 O \end{array}}_{SH} (9)$$

The selenium and tellurium containing five-membered rings 6g-n have been prepared by reaction with Li₂Se or Li₂Te. In these cases the reactions yield only the expected five-membered ring compounds without six-membered rings (Me₂ME)₃ and **5c,d** as by-products (Eq. (10)).

As stated above, pure $Me_4Si_2(Te)_2SiMe_2$ (6) is also observed in the reaction of pure 1 with Li_2Te at room temperature under the cleavage of the Si–Si bonds.

Mixed sulfur selenium (**6p**), sulfur tellurium (**6q**) as well as selenium tellurium (**6r**) five-membered rings could be detected in the product mixtures besides **6a**, **6g** and **6l**, if 1:1 mixtures of **1** and Me₂SiCl₂ were reacted with 1:1 mixtures of Li₂E and Li₂E' in THF.

No oxygen containing five-membered rings, but the O-substituted six-membered rings 5e-g were observed as by-products when the reactions were carried out in the presence of traces of moisture. The larger bond angle SiOSi prevents the formation of the smaller five-membered rings in this case.

The NMR data of all prepared five-membered rings are given in Tables 5 and 6. **6e** has been synthesized before in a different route [9], but only the ¹¹B- and ¹H-NMR shifts were given. The strongly deshielded selenium NMR signal in **6k** compared to all other selenium compounds of this paper is remarkable. In contrast to other ⁷⁷Se-NMR spectra this signal is much more broadened due to the contact with the quadrupolar nuclei ¹⁰B and ¹¹B. The same reason is responsible for the problems in detecting the ipso carbon atoms of the phenyl rings in **6e** and **6k**.

Compared with the six-membered heterocycles discussed before, the ²⁹Si-NMR signals of the same silyl units in five-membered rings are shifted significantly to Table 5

NMR data of five-membered rings $Me_4Si_2(E)_2SiMe_2$ (E = S, Se, Te)

compound	δ _E	group	δ_{Si}	¹ J _{SiE}	² J _{SiE}	δ _C	¹ J _{SiC}	δ_{H}
S. (6a)	-	Si ₂ Me ₄	11.0	-	-	1.09	46.5	0.48
Me_2Si SiMe ₂		SiMe ₂	34.1	-	-	8.46	58.3	0.62
Me ₂ Si								
Se (6g)	Se: -302	Si ₂ Me ₄	14.0	105.5	$^{2}J_{SeC}$: 6	0.7	45.2	0.58
Me_2Si SiMe ₂		SiMe ₂	24.8	128.3	-	9.8	54.0	0.85
Me ₂ Si Se								
Te (61)	Te: -774	Si ₂ Me ₄	10.2	279.9	28.7	0.3	42.8	0.71
SiMe_2 Si SiMe ₂					² J _{TeC} : 19.8			
Me ₂ Si Te		SiMe ₂	-22.8	334.3	² J _{TeC} : 17.1	11.0	47.6	1.20
S (6p)	Se: -312	SSiMe ₂	14.5	-		0.9	45.6	0.49
Me ₂ Si SiMe ₂		$SeSiMe_2$	10.3	104.0	-	0.8	44.7	0.58
Me ₂ Si Se		E_2SiMe_2	29.9	125.4	-	9.2	56.4	0.73
S (6q)	Te:-827	SSiMe ₂	21.2	_	24.4	0.5	45.2	0.49
SiMe ₂ Si		$TeSiMe_2$	-2.1	268.2	¹ J _{SiSi} : 84.6	0.5	43.7	0.71
Me ₂ Si Te		E_2SiMe_2	10.5	329.0	² J _{TeC} : 16.0	10.5	53.5	0.89
Se (6r)	Se: -288	SeSiMe ₂	21.1	109.3	² J _{SiTe} : 25.8	0.5	44.7	0.58
SiMe ₂		TeSiMe ₂	2.0	272.7	² J _{SiSe} : 6	0.4	42.8	0.71
Me_2Si Te	Te: -806	E_2SiMe_2	3.1	Se: 129.3	-	10.8	50.0	1.01
_				Te: 334.3	¹ J _{SiSi} : 84.0			

a lower field. A closer look reveals that this low field shift increases within the disilaryl unit (in comparison with **5b**-**d**), if one goes down the row of S, Se and Te, whereas the opposite is observed for the monosilyl units $Me_2Si(E-)_2$ (in comparison with **2a**-**c**), see Fig. 6.

In the three tin derivatives $Me_4Si_2(E)_2SnMe_2$ (E = S (6c), Se (6i), Te (6n)) the ¹¹⁹Sn-NMR signals are shifted downfield by about 50 ppm in comparison with 4a-c.

The values of δ_{Se} and δ_{Te} in the five-membered rings $Me_4Si_2(E)_2MMe_2$ (M = Si, Ge, Sn), where the E atoms are placed between one disilaryl and one MMe₂ unit, are almost exactly the average between the shifts found in the comparable six-membered rings **5c,d**, **2b**-**4b** and **2c**-**4c** for M = Si, while for M = Ge and Sn the deviations towards higher field increase up to 146 ppm in **6n**.

Other NMR parameters do not show significant changes due to the change in ring size, at best it seems, that ${}^{1}J_{\text{SiSi}}$ in analogous units E–SiMe₂–SiMe₂–E' are in five-membered rings by 4–5 Hz smaller than in sixmembered rings.

In five-membered rings with two different E atoms $(\mathbf{6p-r}) \ \delta_{\mathrm{Si}}$ of the unit E-Me₂Si-E' is almost the average of the chemical shifts of the monosilyl unit in the rings Si₂Me₄(E)₂SiMe₂ and Si₂Me₄(E')₂SiMe₂ while the ²⁹Si-NMR shifts of the disilaryl units behave like those already discussed for **5e**-**k** but to a larger extent.

2.4. Bis(cyclopentyl) compounds $Me_4Si_2(E)_2SiMe-SiMe(E)_2Si_2Me_4$ (E = S (7a), Se (7b), Te (7c))

In a previous paper [1] we have already reported the formation and the NMR data of the sulfur compound **7a** according to (Eq. (11))

By changing the starting molar ratio of $MeCl_2Si-SiCl_2Me:1$ from 1:2 to 1:1 the amount of the byproduct **5b** could be reduced to 20%. Upon treatment with H₂S and NEt₃ excess $MeCl_2Si-SiCl_2Me$ forms $Me_6Si_6S_6$ [1], which is insoluble in hexane and can therefore be removed very easily.

The selenium and tellurium compounds 7b,c are formed in the reaction of Li_2E with a 1:2 mixture of MeCl₂Si–SiCl₂Me and 1 in THF as main products besides smaller amounts of 5c,d and the noradamantane Me₄Si₄Se₅ in the case of selenium [4] (Eq. (12)): Table 6

NMR data of five-membered ring compounds $Me_4Si_2(E)_2MR_x$ (E = S, Se, Te; MR_x : GeMe₂, SnMe₂, SnPh₂, C(CH₂)₅, BPh)

compound	δ _E	group	δ _M	¹ J _{ME}	δ _C	¹ J _{MC}	$\delta_{\rm H}$
S (6b)) -	Si ₂ Me ₄	12.2	-	1.1	46.2	0.46
Me ₂ Si GeMe,		GeMe ₂	-	-	10.6	-	0.90
Me ₂ Si							
Se (6h)) Se: -294	Si ₂ Me ₄	14.8	111.3	0.6	44.7	0.55
Me_2Si GeMe ₂				² J _{SiSe} : 6.3			
Me ₂ Si Se		$GeMe_2$	-	-	11.8	-	1.09
Te (6m) Te: -740	Si ₂ Me ₄	10.8	292.5	0.3	42.3	0.67
GeMe ₂				² J _{SiTe} : 28.7	² J _{TeC} : 17.6		
Me ₂ Si Te		GeMe ₂	-	-	12.2	-	1.40
Ma Si S (6c) -	Si ₂ Me ₄	10.6	² J _{SiSn} : 10.2	1.6		0.42
SnMe ₂		$SnMe_2$	183		3.5		0.80
Me ₂ SI S							
Me Si S (6d) -	Si ₂ Me ₄	11.7	² J _{SiSn} : 10.2	1.5		0.42
Ma Si SnPh ₂					³ J _{SnC} : 16.8		
Me ₂ SI S		$SnPh_2$	68		a)		a)
Me Si Se (6i) Se: -439	Si ₂ Me ₄	12.2	112.6	1.1		0.52
Me_2Si $SnMe_2$				² J _{SiSe} : 7.2,	³ J _{SnC} : 14.4		
Se Se	•	$SnMe_2$	98.3	1170	3.3	349.5	0.89
_				² J _{SiSn} : 13.0			
Te (6n) Te:	Si ₂ Me ₄	6.7	291.5	0.9		0.67
SnMe_2 SnMe ₂	-1018			² J _{SiTe} : 31.1			
Me ₂ Si Te		$SnMe_2$	-139	2966	7.7		1.1
Me Si S (6f) -	Si ₂ Me ₄	10.5	-	-0.1	47.1	0.49
		C ⁱ	70.7		b)		b)
s	\sim						
Ma Si S (6e	;) -	Si ₂ Me ₄	17.0	-	-0.4	46.6	0.54
BPh		BPh	64.1		c)		c)
S							
Me-Si Se (6k)	Se: +33	Si ₂ Me ₄	18.1	97.2	-0.5	45.2	0.65
BPh Me Si		BPh	70.0		a)		a)
Se Se							

^{a)}: Ph ¹³C: i: 140.0 (${}^{1}J_{SnC}$: 620.0), o: 135.2 (${}^{2}J_{SnC}$: 51.9), m: 128.7 (${}^{3}J_{SnC}$: 67.1), p: 129.9 (${}^{4}J_{SnC}$:

13.6); ¹H: 7.32 (6H), 7.63 (4H)

^{b)}: cyclohexane ring: ¹³C: o: 46.65, m: 24.2, p: 25.0; ¹H: o: 2.02 (${}^{3}J_{HH}$: 5.7), m: 1.68, p: 1.41 (${}^{3}J_{HH}$: 6.6)

^{c)}: Ph ¹³C: o: 134.1, m: 127.6, p: 131.7; ¹H: o: 8.04, m: 7.35, p: 7.43

^{d)}: Ph 13 C: o: 133.9, m: 127.7, p: 131.7; ¹H: o: 8.24 ($^{3}J_{HH}$: 6.6), m: 7.34, p: 7.45 ($^{3}J_{HH}$: 7.3)

Fig. 6. Comparison of δ_{Si} of mono and disilyl units in five- and six-membered ring silicon chalcogenides (2a-c, 5b-d and 6a, 6g, 6l).

Table 7 NMR data of the compounds $Me_4Si_2(E)_2SiMe_-SiMe(E)_2Si_2Me_4$ (E = S, Se, Te (7a-c))

compound	δ_{E}	group	δ_{Si}	J _{SiE}	² J _{SiE}	$\delta_{\rm C}$	¹ J _{SiC}	δ_{H}
$M_2 Si^{S}$ (7a)	-	SiMe	20.25	-	-	7.17	48.6	0.73
Me ₂ Si I SiMe Me ₂ Si / S		SiMe ₂	12.55	-	-	0.90 /	46.2	0.49 /
SiMe ₂ MeSi						1.41		0.50
SiMe ₂								
$M_{2} \overset{\text{Se}}{\Longrightarrow} (7b)$	-347	SiMe	8.42	144.3	19.9	6.9		0.96
I SiMe		SiMe ₂	15.91	107.4	6.3	0.6 /	43.2	0.57 /
Se SiMe ₂						1.0		0.58
SiMe ₂								
Te (7c)	-856	SiMe	-42.80	356.7	34.0	5.35		1.30
Me ₂ Si ! SiMe Me Si		SiMe ₂	11.97	251.7	29.6	0.52 /		0.67/
Me ₂ Si Te SiMe ₂ MeSi SiMe ₂						0.88		0.71

The NMR data of the compounds $7\mathbf{a}-\mathbf{c}$ are given in Table 7.

While the δ_{si} of the Si_2Me_4 units can be compared with the disilaryl units of the five-membered rings **6a**, **6f** and **6l** and show only small additional down field shifts of 1.5–2 ppm the chemical shifts of the central Si_2Me_2 units could at best be compared with the compounds $C_2H_4(S)_2SiMe-SiMe(S)_2C_2H_4$ (δ_{si} : 23.8 ppm) and $C_6H_4(S)_2SiMe-SiMe(S)_2C_6H_4$ (δ_{si} : 20.8 ppm) [2], which are indeed similar to **7a**. But no related selenium or tellurium compounds are known. In contrast to the monocyclic five-membered rings the methyl groups in the SiMe₂ units of 7a-c are diastereotopic giving rise to two different carbon and hydrogen NMR signals. But the averages of the two signals are close to the values found in **6a**, **6f** and **6l**, respectively.

Fig. 7 shows the result of the crystal structure analysis of **7a** confirming the expected bis(cyclopentyl) skeleton. Some important bond lengths and angles are given in Table 8. The five-membered rings adopt a twisted

Fig. 7. ZORTEP plot of the molecular structure of 7a.

Table 8 Important bond distances (Å) and angles (°) of 7a

Atoms	Distances	Atoms	Angles
Si(1)–Si(1a)	2.323(2)	Si(1)–S(1)–Si(2)	104.38(5)
Si(1)–S(1)	2.1458(12)	Si(1)-S(2)-Si(3)	103.85(5)
Si(1)-S(2)	2.1409(12)	S(1)-Si(1)-S(2)	112.65(5)
Si(2)-S(1)	2.1551(12)	S(1)-Si(2)-Si(3)	103.05(5)
Si(3)–S(2)	2.1539(13)	S(2)-Si(3)-Si(2)	103.65(5)
Si(2)-Si(3)	2.3310(13)	Si(1a)-Si(1)-C(1)	111.22(14)
Si(1)-C(1)	1.853(4)	C(2)-Si(2)-C(3)	110.5(2)
Si(2)–C(2)	1.848(4)	C(4)-Si(3)-C(5)	109.1(2)
Si(2)–C(3)	1.860(4)		
Si(3)-C(4)	1.865(4)		
Si(3)-C(5)	1.874(4)		

conformation. Si(2) and Si(3) are 0.382(2) Å above and 0.461(2) Å below the plane defined by the atoms Si(1), S(1) and S(2). The angles at the sulfur atoms are larger than in other silthianes containing five-membered rings Si_3S_2 [1] but in this case the five-membered rings are not incorporated into bi- or polycyclic ring systems, and the angles are close to the calculated Si–S–Si angle of 103.8° in **6a** (B3LYP/6-31G*, [1]). Also the calculated angles S–Si–S and Si–Si–S of 111.6° and 102.2° for **6a** are mirrored well in the observed angles in **7a**. The bond lengths Si–Si, Si–S and Si–C are in the expected range. As already observed in other silthianes the Si–S bond length decreases with increasing number of S substituents at Si. Therefore the Si–S bonds at Si(1) are slightly shorter than the Si–S bonds at Si(2) and Si(3).

3. Experimental

3.1. NMR and GC-MS measurements

All NMR spectra were recorded on a Bruker DPX 400 in CDCl₃ solution and TMS as internal standard for ¹H, ¹³C and ²⁹Si. In order to get a sufficient signal/noise ratio of the ²⁹Si-NMR spectra for obtaining ¹J_{SiC}, ¹J_{SiSi}, ^{1,2}J_{SiSe} or ^{1,2}J_{SiTe} satellites also ²⁹Si INEPT spectra were recorded. ⁷⁷Se, ¹²⁵Te and ¹¹⁹Sn spectra were recorded using an IGATED pulse program.

External BF₃·OEt₂, Me₄Sn, Ph₂Se₂ (δ_{se} : 460 ppm) and Ph₂Te₂ (δ_{Te} : 422 ppm) in CDCl₃ were used as standards for ¹¹B, ¹¹⁹Sn, ⁷⁷Se and ¹²⁵Te.

Mass spectra were measured on a Hewlett–Packard 5971 (ionization energy: 70 eV, column: 30 m \times 0.25 mm \times 0.25 µm, phenylmethylpolysiloxane, column temperature: 80°C (3 min)/20 K min⁻¹, flow: He 0.5 ml min⁻¹).

3.2. Crystal structure analysis

X-ray structure analysis measurements were performed on a Bruker SMART CCD. Crystal data of **5b**, 5c and 7a as well as data collection and refinement details are given in Table 9.

The unit cells were determined with the program SMART [31]. For data integration and refinement of the unit cells the program SAINT [31] was used. The space groups were determined using the programs XPREP [31] (**5a**, **5b**) and ABSEN [32]. All data were corrected for absorption using SADABS [33]. The structures were solved using direct methods (**5a**, **5b**: SHELX-97 [34], **7a**: SIR-97 [35]), refined using least-squares methods (SHELX-97) and drawn using ZORTEP [36]. The ellipsoides at the nonhydrogen atoms are at the 50% probability level.

3.3. Starting materials

 H_2S (N25, Air Liquide), Se, Te, triethylamine, 1 M Li[BEt₃H] in THF (Super Hydride), Me₂SiCl₂, Me₂GeCl₂, Me₂SnCl₂, Ph₂SnCl₂, PhBCl₂ were commercially available. 1 and SiCl₂Me–SiCl₂Me were prepared as described previously [37,38]. THF was distilled from sodium potassium alloy prior to use. The other solvents were dried over KOH or sodium wire. All reactions were carried out under argon applying standard Schlenk techniques.

3.4. Preparation of the six-membered ring compounds $(Me_2ME)_3$ (M = Si, Ge, Sn; E = S, Se, Te) (2a-4c)

3.4.1. Sulfur compounds (2a-4a)

In a typical reaction 2 mmol Me₂MCl₂ (M = Si, Ge, Sn) was dissolved in 20 ml hexane and a stream of dried H₂S was passed through the stirred solution while 0.55 ml (4 mmol) NEt₃ were slowly added by a syringe. A white precipitate of Et₃NHCl was formed. After filtration the solvent was removed in vacuo yielding pure 2a-3a as colorless oils and 4a as a semicrystalline residue in ca. 60% yield.

2a GC-MS m/e (rel. int.): 270 (M⁺, 21), 255 (Me₅Si₃S₃, 100), 165 (Me₃Si₂S₂), 73 (Me₃Si, 35).

 $(Me_6^{72}Ge_2^{74}GeS_3,$ **3a** GC–MS 404 13). 389 $(Me_5^{72}Ge_2^{74}GeS_3, 92), 255 (Me_3^{72}Ge^{74}GeS_2, 100), 225$ (Me⁷²Ge⁷⁴GeS₂, 12), 151 (Me⁷⁴GeS, 5), 119 (Me⁷⁴Ge, 48), 89 (Me⁷⁴Ge, 14). (The isotopic patterns of all fitted fragments the natural abundance of 70 Ge: 72 Ge: 73 Ge: 74 Ge: 76 Ge = 20.5:27.4: 7.8: 36.5: 7.8 [39].) 4a GC-MS 527 ($Me_5^{118}Sn^{120}Sn_2S_3$, 16), 497 $(Me_3^{118}Sn^{120}Sn_2S_3, 4), 362 (Me_4^{118}Sn^{120}SnS_2, 20), 347$ $(Me_3^{118}Sn^{120}SnS_2, 100), 317 (Me^{118}Sn^{120}SnS_2, 63), 302$ (¹¹⁸Sn¹²⁰SnS₂, 19), 270 (¹¹⁸Sn¹²⁰SnS, 10), 197 (Me₃¹²⁰SnS, 35), 165 (Me₃¹²⁰Sn, 31), 135 (Me¹²⁰Sn, 19), 120 (¹²⁰Sn, 15) (The isotopic patterns of all fragments fitted the ¹¹⁶Sn: ¹¹⁷Sn:¹¹⁸Sn:¹¹⁹Sn: abundance natural of 120 Sn: 122 Sn: 124 Sn = 14.53:7.68:24.22:8.58:32.59:4.63:5.79 [39].)

3.4.2. Selenium compounds (2b-4b)

Black selenium powder (0.16 g, 2 mmol) was reacted with a mixture of 4 ml 1 M solution of Li[BEt₃H] ("Super Hydride") in THF and 5 ml THF under stirring. The selenium dissolved within a few seconds with the formation of a white suspension of Li₂Se in THF. Me₂MCl₂ (2 mmol) dissolved in 1 ml THF was added to this mixture. The precipitation of Li₂Se disappeared almost immediately. After stirring for 30 min at room temperature the THF was removed in vacuo and replaced by 10 ml hexane. The solution was separated from precipitated LiCl. Removal of the solvent produced **2b** and **3b** as colorless oils and **4b** as a white solid in ca. 50% yield.

3.4.3. Tellurium compounds (2c-4c)

Tellurium powder (0.25 g, 2 mmol (200 mesh)) was added to a mixture of 4 ml 1 M solution of Li[BEt₃H] ("Super Hydride") in THF and 5 ml THF under stirring. After 5 min the tellurium started to react under the formation of a deep purple solution which became dark red after 1 h at room temperature.

Dichloride Me_2MCl_2 (2 mmol) dissolved in 1 ml THF was added to this "Li₂Te"-solution under stirring,

which turned light orange. Work-up as described for the selenium compounds 2b-4b yielded the tellurium compounds as light yellow viscous oils in ca. 40% yield.

3.5. Preparation of the six-membered ring compounds $E(SiMe_2SiMe_2)_2E$ (E = O, S, Se, Te) (5a-d) and mixed compounds $E(SiMe_2SiMe_2)_2E'$ ($E \neq E$)'

3.5.1. Synthesis of $S(SiMe_2SiMe_2)_2S$ (5b)

1,2-Si₂Me₄Cl₂ (1) (2.5 g, 13.3 mmol) was dissolved in 100 ml hexane and 3.7 ml (26.6 mol) NEt₃ was slowly added while a stream of dried H₂S passed through the stirred solution. After 1 h the reaction mixture was filtered from precipitated Et₃NHCl and most of the solvent was removed in vacuo when **5b** crystallized in colorless needles from the solution in yield of 1.6 g (81%).

If the reaction is carried out with H_2S , which was not dried with $CaCl_2$ prior to use, besides **5b** the monooxygen and dioxygen six-membered ring compounds **5e** and **5a** were formed as by-products, which could also be proved by GC-MS:

5b GC–MS: 296 (M⁺, 23), 281 (Me₇Si₄S₂, 13), 237 (Me₅Si₃S₂CH₂, 11), 116 (Me₄Si₂, 100), 73 (Me₃Si, 92).

Table 9

Crystal data	of 5b,	5c and	7a as	well as	data	collection	and	refinement	details
--------------	--------	--------	-------	---------	------	------------	-----	------------	---------

	5b	5c	7a
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$	$P2_1/n$
Unit cell dimensions			
a (Å)	6.8132(5)	6.8672(10)	6.6431(5)
b (Å)	12.1869(9)	12.2988(17)	12.4055(11)
<i>c</i> (Å)	10.1091(8)	10.2087(15)	14.7678(12)
α (°)	90	90	90
β (°)	91.006(2)	1.852(3)	96.962(2)
γ (°)	90	90	90
Volume (Å ³)	839.25(11)	861.8(2)	1208.1(2)
Z	2	2	2
Density (calc.) in $g \text{ cm}^{-3}$	1.174	1.505	1.229
Linear absorption coefficient (mm ⁻¹)	0.575	4.541	0.682
Radiation used	Mo–K _~	Mo-K _~	Mo-K ₂
Temperature	173(2) K	173(2) K	173(2) K
Scan method	ω scans	ω scans	ω scans
Absorption correction	Empirical	Empirical	Empirical
Max/min transmission	0.8465/0.6960	0.6118/0.2917	0.9602/0.8756
Measured reflections	5581	4267	5306
Independent reflections	2404	2033	2619
Observed reflections	2078	1628	1520
R(int)	0.0192	0.0254	0.0547
Theta range for collection (°)	2.62-30.74	2.59-31.16	2.15-29.55
Completeness to θ_{max} (%)	92.0	73.2	77.3
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Final R_1 ($I > 2\sigma(I)$)	0.0215	0.0292	0.0410
R_1 (all data)	0.0263	0.0422	0.0989
H-locating and refining	difmap/refall	difmap/refall	difmap/refall
Goodness-of-fit on F^2	1.028	1.000	0.908
Max/min e-density (e $Å^{-3}$)	0.258/-0.261	0.558/-0.715	0.354/-0.298

5e GC-MS: 280 (M⁺, 22), 265 (Me₇Si₄OS, 16), 221 (Me₇Si₃S, 14), 205 (Me₇Si₃O, 13), 147 (Me₅Si₂O, 24), 116 (Me₄Si₂, 100), 101 (Me₃Si₂, 7), 73 (Me₃Si, 57).

5a GC-MS: 264 (M⁺, 32), 249 (Me₇Si₄O₂, 41), 221 (Me₇Si₃O₂, 7), 205 (Me₇Si₃O, 97), 191 (Me₅Si₃O₂, 57), 175 (Me₅Si₃O, 15), 147 (Me₅Si₂O, 27), 131 (Me₅Si₂, 12), 117 (Me₃Si₂O, 18), 91 (35), 73 (Me₃Si, 100).

3.5.2. Synthesis of $Se(SiMe_2SiMe_2)_2Se$ (5c)

1 (2 mmol) was added at room temperature to Li_2Se suspension prepared from 2 mmol Se powder, 4 ml 1 M $Li[BEt_3H]$ solution and 5 ml THF and the mixture was stirred for 1 h before the solvent was removed and replaced by 10 ml hexane. The hexane solution was separated from precipitated LiCl and concentrated in vacuo until needles of **5c** crystallized from the solution in 64% yield (0.25 g).

If this reaction is carried out with THF, which was not dried very carefully, the monooxygen compound 5f was obtained as by-product as confirmed by GC-MS.

5c GC-MS: 392 (M⁺, 2), 377 (Me₇Si₄⁸⁰Se₂, 1), 333 (Me₅Si₃Se₂CH₂, 2), 319 (Me₅Si₃Se₂, 0.5), 239 (Me₅Si₃Se, 3), 211 (Me₅Si₂Se, 2), 195 (Me₃Si₂SeCH₂, 5), 131 (Me₅Si₂, 8), 116 (Me₄Si₂, 100), 101 (Me₃Si₂, 8), 73 (Me₃Si, 74).

5f GC-MS: 328 (M⁺, 3), 313 (Me₇Si₄OSe), 269 (Me₇Si₃Se, 4), 255 (Me₅Si₃OSe), 205 (Me₇Si₃O, 7), 189 (Me₇Si₃, 2), 175 (Me₅Si₃O, 3), 147 (Me₅Si₂O, 32), 131 (Me₅Si₂, 12), 116 (Me₄Si₂, 91), 101 (Si₂Me₃, 9), 73 (Me₃Si, 100). (The isotopic patterns of all fragments fitted the natural abundance of ⁷⁶Se:⁷⁷Se:⁷⁸Se:⁸⁰Se: ⁸²Se = 9.2:7.6:23.7:49.8:8.8 [39].)

3.5.3. Synthesis of $Te(SiMe_2SiMe_2)_2Te$ (5d)

The tellurium compound was synthesized essentially via the same procedure as the selenium compound 5c, but the disilane 1 was added while the Li₂Te suspension was cooled to the range -40 to -30° C and further work-up was carried out in an ice bath (0°C). Colorless, very thin needles of **5d** could be obtained which decompose very rapidly, if the sample is heated above room temperature, but in solid state under Ar they are stable at 20°C for at least several weeks.

Again, if the reaction is carried out with THF containing traces of moisture, the monooxygen compound 5g could be obtained as by-product.

If the addition of 1 to the Li₂Te suspension is done at room temperature, pure **6** was obtained as a colorless oil after work-up.

The six-membered rings containing two different chalcogen atoms (E = S, Se; E' = Se, Te) were prepared via the same route than **5c** and **5d** but 2 mmol of **1** was added to a mixture of Li_2E and $\text{Li}_2\text{E}'$ prepared from 1 mmol E, 1mmol E' and 4 ml 1 M Li[BEt₃H] in 5 ml THF. **5h**, **5i** and **5k** were detected by NMR in a mixture

with two of the already known compounds **5b**, **5c** and **5d** and in the case of **5h** also by GC–MS.

5h GC-MS: 344 (M⁺, 2), 329 (Me₇Si₄SSe, 1), 285 (Me₅Si₃SSeCH₂, 2), 239 (Me₅Si₃Se, 2), 211 (Me₅Si₂Se, 1), 191 (Me₅Si₃S, 3), 147 (Me₃Si₂SCH₂, 6), 131 (Me₅Si₂, 9), 116 (Me₄Si₂, 100), 101 (Me₃Si₂, 8), 73 (Me₃Si, 66).

3.6. Preparation of the five-membered ring compounds $Me_4Si_2(E)_2MR_x$

3.6.1. Sulfur derivatives $Me_4Si_2(S)_2MMe_2$ (M = Si, Ge, Sn (6a-c)) and $Me_4Si_2(S)_2SnPh_2$ (6d)

1 (0.28 g, 1.5 mmol) and 1.5 mmol Me₂MCl₂ (M = Si, Ge or Sn) or 1.5 mmol Ph₂SnCl₂ were dissolved in 40 ml hexane (or 25 ml toluene in the cases of the tin compounds) and 0.83 ml (6 mmol) NEt₃ was slowly added while a stream of dried H₂S was bubbled through the stirred solution. After 1 h the mixture was filtered from precipitated ammonium salt and the solvent removed in vacuo yielding an oily residue of ca. 55-65% of the desired five-membered ring compound **6a**-**d** besides a mixture of the six-membered rings **2**-**4a** and **5b**.

6a GC-MS: 238 (M⁺, 50), 223 (Me₅Si₃S₂, 65), 165 (Me₃Si₂S₂, 34), 163 (Me₅Si₂S, 30), 73 (Me₃Si, 100).

6b GC-MS: 284 (M⁺, 7), 269 (Me₅GeSi₂S₂, 12), 209 (Me₅GeSiS; 1), 181 (MeGeSiS₂, 2), 163 (Me₅Si₂S, 10), 119 (Me₃Ge, 4), 89 (MeGe, 5), 73 (Me₃Si, 100).

6c GC-MS: 330 (M⁺, 2), 315 (Me₅Si₂SnS₂, 25), 227 (MeSiSnS₂, 14), 195 (MeSiSnS, 2), 165 (Me₃Sn, 3), 135 (MeSn, 13), 73 (Me₃Si, 100).

3.6.2. Preparation of $Me_4Si_2(S)_2BPh$ (6e)

PhBCl₂ (0.32 g, 2 mmol) and 0.37 g (2 mmol) **1** were dissolved in 40 ml hexane and 1.11 ml (8 mmol) NEt₃ was slowly added while a stream of H₂S was passed through the stirred solution. After 1 h the product mixture was filtered and the solvent was removed yield-ing pure **6e** as very thin needles unsuitable for X-ray analysis. The observed ¹¹B- and ¹H-NMR signals were in good agreement with the ¹H- and ¹¹B-NMR data of **6e** published in Ref. [9].

3.6.3. Preparation of $Me_4Si_2(S)_2C(CH_2)_5$ (6f)

According to the procedure described in Ref. [30] 10.2 g (0.104 mol) cyclohexanone and 0.86 g (0.01 mol) morpholine were dissolved in 40 ml methanol and H_2S was bubbled through the mixture for 3 h. The resulting product was treated with diluted sulfuric acid until two phases occurred. The oily organic phase was separated, the solvents were removed in vacuo at room temperature and the product was dried over CaCl₂. ¹H- and ¹³C-NMR spectra revealed that the product is pure cyclohexane-1,1-dithiol which was used without further purification, yield: 6.3 g (0.043 mol, 41%).

¹H-NMR (ppm): 2.53 (SH), 1.87 (*ortho*-CH₂, ${}^{3}J_{HH} = 5.9$ Hz), 1.52 (*meta*-CH₂), 1.32 (*para*-CH₂, ${}^{3}J_{HH} = 5.7$ Hz). ¹³C-NMR (ppm): 53.3 (*C*(SH)₂), 45.7 (*ortho*-CH₂), 23.6 (*meta*-CH₂), 24.9 (*para*-CH₂).

Cyclohexane-1,1-dithiol (0.22 g, 1.5 mmol) and 0.28 g (1.5 mmol) 1 were dissolved in 25 ml hexane and 0.42 ml (3 mmol) NEt₃ was slowly added under stirring. After filtration from precipitated Et₃NHCl and removal of the solvent 0.29 g (74%) pure **6f** remained as an oily residue.

GC-MS: 262 (M⁺, 3), 247 (M - Me, 2), 181 (Me₄Si₂S₂H, 10), 180 (Me₄Si₂S₂, 11), 165 (Me₃Si₂S₂, 100), 149 (Me₄Si₂SH, 17), 133 (Me₃Si₂S, 10), 73 (Me₃Si, 23).

3.6.4. Selenium and tellurium derivatives $Me_4Si_2(Se)_2MMe_2$ (M = Si, Ge, Sn (6g-i)) and $Me_4Si_2(Te)_2MMe_2$ (6l-n)

Selenium (0.16 g, 2 mmol) or 0.25 g (2 mmol) tellurium powder reacted at room temperature with a solution of 4 mmol Li[BEt₃H] ("Super hydride") in 10 ml THF. The selenium dissolved very rapidly and the initially dark brown solution became a white suspension of Li₂Se within a few minutes. But it took 1-2 h until the tellurium was completely dissolved and the initially deep purple solution became a light red suspension of Li₂Te.

A mixture of 0.187 g (1 mmol) 1 and 1 mmol of the dichlorides Me_2MMe_2 were dissolved in 2 ml THF and added to the Li₂E suspension under stirring. After 30 min the solvent was removed and exchanged with 10 ml hexane. The clear solution was separated and the solvent removed to yield the five-membered ring compounds as oils in a 50–70% yield. Only in the case of **6n** some **6l** occurred as the by-product as determined by NMR. **5f** or **5g**, respectively, were detected as by-products, if the reactions were not carried out under absolute exclusion from oxygen and moisture.

6g GC-MS: 334 (M⁺, 6), 319 (Me₅Si₃⁸⁰Se₂, 8), 261 (Me₃Si₂Se₂, 3), 246 (Me₂Si₂Se₂, 1), 211 (Me₅Si₂Se, 17), 195 (Me₃Si₂SeCH₂, 7), 181 (Si₂Me₃Se, 5), 123 (MeSiSe, 7), 73 (Me₃Si, 100).

3.6.5. Mixed five-membered rings $Me_4Si_2(E)(E')SiMe_2$ (E = S, E' = Se (6p), E = S, E' = Te (6q), E = Se, E' = Te (6r))

E (1 mmol) (S or Se) and 1 mmol E' (Se or Te) were mixed and added to a solution of 4 mmol Li[BEt₃H] in 10 ml THF. A mixture of 0.187 g (1 mmol) 1 and 0.129 g (1 mmol) Me₂SiCl₂ in 2 ml THF was added to the stirred suspension of Li₂E and Li₂E'. After work-up as described in Section 3.6.4 an oily mixture was obtained, which contained 45-50% **6p**, **6q** or **6r**, respectively, besides a mixture of two of the homocycles **6a**, **6g** and **6**. **6p** GC-MS: 286 (M⁺, 11), 271 (Me₅Si₃SSe, 16), 213 (Me₃Si₂SSe, 10), 211 (Me₅Si₂Se, 9), 181 (Me₃Si₂Se, 2), 163 (Me₅Si₂S, 18), 147 (Me₃Si₂SCH₂, 8), 133 (Me₃Si₂S, 6), 123 (MeSiSe, 4), 73 (Me₃Se, 100).

3.7. Preparation of the bis(cyclopentyl) compounds $Me_4Si_2(E)_2Si_2Me_2(E)_2Si_2Me_4$ (E = S, Se, Te (7*a*-c))

1 (0.37 g, 2 mmol) and 0.46 g (2 mmol) SiCl₂Me-SiCl₂Me were dissolved in 50 ml hexane and H₂S was bubbled through the solution while 1.66 ml (12 mmol) NEt₃ was added by a syringe. After 1 h the mixture was filtered and the solvent removed to yield a crystalline residue of 75% **7a** besides **5b**. Single crystals of **7a** were obtained from hexane solution.

7b and **7c** were obtained by reacting a mixture of 0.187 g (1 mmol) **1** and 0.114 g (0.5 mmol) SiCl₂Me-SiCl₂Me dissolved in 1 ml THF with a suspension of 2 mmol Li₂E (E = Se, Te, prepared from E and LiBEt₃H as described above) in 5 ml THF at room temperature (E = Se) or at -20° C (E = Te). After reacting for 30 min the THF was exchanged for hexane and the clear hexane solution was separated and the solvent removed to yield **7b** as a semicrystalline residue and **7c** (which contained **5d** and **6l** as by-products) as an oily residue.

4. Supplementary material

Crystallographic data (excluding structure factors) for the structural analyses have been deposited at the Cambridge Crystallographic Data Centre, CCDC nos. 154132, 154133 and 154134 for **5b**, **5c** and **7a**, respectively. Copies of the data can be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223336033 or e-mail: deposit@ccdc.cam.ac.uk or http:// www.ccdc.cam. ac.uk).

Acknowledgements

The authors wish to thank the 'Deutsche Forschungsgemeinschaft' for financial support. Special thanks are given to Prof. H. Lang, Chair of Inorganic Chemistry, TU, Chemnitz for the access to the X-ray facility used to determine the single crystal structures.

References

- U. Herzog, U. Böhme, G. Roewer, G. Rheinwald, H. Lang, J. Organomet. Chem. 602 (2000) 193.
- [2] U. Herzog, U. Böhme, G. Rheinwald, J. Organomet. Chem. 612 (2000) 133.
- [3] U. Herzog, U. Böhme, E. Brendler, G. Rheinwald, J. Organomet. Chem. (2001), in press.

- [4] U. Herzog, G. Rheinwald, J. Organomet. Chem. (2001), in press.
- [5] H.-G. Horn, M. Hemeke, Chem.-Ztg. 106 (1982) 263.
- [6] P. Boudjouk, S.R. Bahr, D.P. Thompson, Organometallics 10 (1991) 778.
- [7] A. Blecher, B. Mathiasch, T.N. Mitchell, J. Organomet. Chem. 184 (1980) 175.
- [8] E. Hengge, H.-G. Schuster, J. Organomet. Chem. 240 (1982) C65.
- [9] H. Nöth, H. Fußstädter, H. Pommerening, T. Taeger, Chem. Ber. 113 (1980) 342.
- [10] L. Pazdernik, F. Brisse, R. Rivest, Acta Crystallogr. B 33 (1977) 1780.
- [11] B. Menzebach, P. Bleckmann, J. Organomet. Chem. 91 (1975) 291.
- [12] H.-J. Jacobsen, B. Krebs, J. Organomet. Chem. 136 (1977) 333.
- [13] M. Dräger, A. Blecher, H.-J. Jacobsen, B. Krebs, J. Organomet. Chem. 161 (1978) 319.
- [14] A. Blecher, M. Dräger, Angew. Chem. 91 (1979) 740.
- [15] M. Dräger, B. Mathiasch, Z. Anorg. Allg. Chem. 470 (1980) 45.
 [16] H. Puff, B. Breuer, W. Schuh, R. Sievers, R. Zimmer, J. Organomet. Chem. 332 (1987) 279.
- [17] U. Herzog, G. Roewer, Main Group Metal Chem. 22 (1999) 579.
- [18] E.V. Van den Berghe, G.P. van der Kelen, J. Organomet. Chem. 122 (1976) 3290.
- [19] U. Herzog, J. Prakt. Chem. 342 (2000) 379.
- [20] U. Herzog, Main Group Metal Chemistry 24 (2001) 31.
- [21] J.D. Kennedy, W. McFarlane, J. Chem. Soc. Perkin Trans. 2 (1974) 146.
- [22] J.D. Kennedy, W. McFarlane, J. Chem. Soc. Dalton Trans. (1973) 2134.
- [23] A.L. Allred, E.G. Rochow, J. Inorg. Nucl. Chem. 5 (1958) 261.

- [24] H.C.E. McFarlane, W. McFarlane, J. Chem. Soc. Dalton Trans. (1973) 2416.
- [25] H.C.E. McFarlane, W. McFarlane, in: J. Mason (Ed.), Multinuclear NMR, Plenum, New York, 1989, pp. 417–435 (chap. 15).
- [26] M. Kumada, M. Yamaguchi, Y. Yamamoto, J. Nakajima, K. Shiina, J. Org. Chem. 26 (1956) 1264.
- [27] G. Engelhardt, R. Radeglia, H. Kelling, R. Stendel, J. Organomet. Chem. 212 (1981) 51.
- [28] H.-G. Horn, J. Prakt. Chem. 334 (1992) 201.
- [29] E.A. Williams, NMR spectroscopy of organosilicon compounds, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Organic Silicon Compounds, Wiley, New York, 1989, pp. 511–554.
- [30] J. Jentzsch, J. Fabian, R. Mayer, Chem. Ber. 95 (1962) 1764.
- [31] Bruker AXS Inc., Madison, WI, USA, 1998.
- [32] P. McArdle, J. Appl. Crystallogr. 29 (1996) 306.
- [33] Area-Detector Absorption Correction, Siemens Industrial Automation Inc., Madison, WI, USA, 1996.
- [34] G.M. Sheldrick, SHELX97 (includes SHELX97, SHELX197, CIFTAB), Programs for Crystal Structure Analysis (Release 97-2), University of Göttingen, Germany, 1997.
- [35] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32 (1999) 115.
- [36] L. Zsolnai, G. Huttner, ZORTEP, University of Heidelberg, Germany, 1994.
- [37] H. Sakurai, K. Tominaga, T. Watanabe, M. Kumada, Tetrahedron 45 (1966) 5493.
- [38] R. Lehnert, M. Höppner, H. Kelling, Z. Anorg. Allg. Chem. 591 (1990) 209.
- [39] J. Emsley, Die Elemente, Walter de Gruyter, Berlin, New York.